Affiliation:
1. Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran (Islamic Republic of)
Abstract
Abstract
Gravitational Search Algorithm (GSA) isanovel meta-heuristic algorithm. Despite it has high exploring ability, this algorithm faces premature convergence and gets trapped in some problems, therefore it has difficulty in finding the optimum solution for problems, which is considered as one of the disadvantages of GSA. In this paper, this problem has been solved through definingamutation function which uses fuzzy controller to control mutation parameter. The proposed method has been evaluated on standard benchmark functions including unimodal and multimodal functions; the obtained results have been compared with Standard Gravitational Search Algorithm (SGSA), Gravitational Particle Swarm algorithm (GPS), Particle Swarm Optimization algorithm (PSO), Clustered Gravitational Search Algorithm (CGSA) and Real Genetic Algorithm (RGA). The observed experiments indicate that the proposed approach yields better results than other algorithms compared with it.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献