Object Tracking Based on Online Semi-Supervised SVM and Adaptive-Fused Feature

Author:

Xiang Ruxi123,Zhu Xifang123,Wu Feng123,Xu Qinquan123,Li Jianwei4

Affiliation:

1. College of Optoelectronic Engineering, Changzhou Institute of Technology, 213002 China

2. Changzhou Institute of Modern Optical Technology, 213002 China

3. Changzhou Key Laboratory of Optoelectronic Materials and Devices, 213002 China

4. Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education, Chongqing University, Chongqing, 400044 China

Abstract

Abstract In order to improve the performance of tracking, we propose a new online tracking method based on classification and adaptive fused feature. We first label a few positive and negative samples, train the classifier by the online SSSM (Semi-Supervised Support Vector Machine) learning and these labelled samples, and then locate the position of the object from the next frame according to the trained classifier. In order to adapt more of the new samples, we need to update the classifier by finding new samples with high confident value obtained by the trained classifier and add them into the online SSSM. Finally we also update the object model by the online incremental PCA (Principal Component Analysis) because of background clutter, heavy occlusion and complicated object appearance changes. Compared with the basic mean shift tracking and the ensemble tracking method, experimental results show that our tracking method is able to effectively handle heavy occlusion and background clutter in some challenge videos including some thermal videos.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3