Learned Features are Better for Ethnicity Classification

Author:

Anwar Inzamam1,Ul Islam Naeem1

Affiliation:

1. Intelligent Systems Research Institute (ISRI), College of Information and Communication Engineering , Sungkyunkwan University , Suwon , South Korea

Abstract

Abstract Ethnicity is a key demographic attribute of human beings and it plays a vital role in automatic facial recognition and have extensive real world applications such as Human Computer Interaction (HCI); demographic based classification; biometric based recognition; security and defense to name a few. In this paper, we present a novel approach for extracting ethnicity from the facial images. The proposed method makes use of a pre trained Convolutional Neural Network (CNN) to extract the features, then Support Vector Machine (SVM) with linear kernel is used as a classifier. This technique uses translational invariant hierarchical features learned by the network, in contrast to previous works, which use hand crafted features such as Local Binary Pattern (LBP); Gabor, etc. Thorough experiments are presented on ten different facial databases, which strongly suggest that our approach is robust to different expressions and illuminations conditions. Here we consider ethnicity classification as a three class problem including Asian, African-American and Caucasian. Average classification accuracy over all databases is 98.28%, 99.66% and 99.05% for Asian, African-American and Caucasian respectively. All the codes are available for reproducing the results on request.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ethnicity Classification Based on Facial Images using Deep Learning Approach;International Journal of Advanced Computer Science and Applications;2024

2. Classification of Ethnicity Using Efficient CNN Models on MORPH and FERET Datasets Based on Face Biometrics;Applied Sciences;2023-06-19

3. Self-supervised Learning for Fine-grained Ethnicity Classification under Limited Labeled Data;2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG);2023-01-05

4. Generating Embedding Features Using Deep Learning for Ethnics Recognition;The International Arab Journal of Information Technology;2023

5. A Comprehensive Review in Using the Advances of Deep Learning in the 3D Race Classification;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3