Quantitative Comparison of Deformable Models in Range Segmentation

Author:

Amine Khaldi1,Hayet Farida Merouani1

Affiliation:

1. Department of Computer Sciences, Badji Mokhtar University, Laboratory of LRI, BP12. Sidi Amar, 23000 Annaba, Algeria

Abstract

Abstract In this paper we segment range images by applying three deformable models (the classical Active Contour, the adaptive active contour and the Level Set method). These three methods are used to segment images with planar and curved surface scenes. Then the numerical results obtained are compared in order to find the best technique of deformable models adapted to segmentation of range images. Despite of the good experimental results on simple objects, we have noted that the adaptive and classical snake methods have a few limitations and cannot detect discontinuities in curvatures and some items do not always converge. However, the level set method is very efficient for segmenting range images with curvature and complex forms.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deformable model segmentation for range image watermarking;Multimedia Tools and Applications;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3