A Distributed Adaptive Neuro-Fuzzy Network for Chaotic Time Series Prediction

Author:

Terziyska Margarita1

Affiliation:

1. Institute of Information and Communication Technologies, 1113 Sofia

Abstract

Abstract In this paper a Distributed Adaptive Neuro-Fuzzy Architecture (DANFA) model with a second order Takagi-Sugeno inference mechanism is presented. The proposed approach is based on the simple idea to reduce the number of the fuzzy rules and the computational load, when modeling nonlinear systems. As a learning procedure for the designed structure a two-step gradient descent algorithm with a fixed learning rate is used. To demonstrate the potentials of the selected approach, simulation experiments with two benchmark chaotic time systems − Mackey-Glass and Rossler are studied. The results obtained show an accurate model performance with a minimal prediction error.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3