Depth Data Reconstruction Based on Gaussian Mixture Model

Author:

Li Zhe1,Ma Chen2,Zhang Tian-Fan1

Affiliation:

1. College of Technology, Hubei Engineering University, Xiao Gan 432000, China, Department of Automatic Control, Northwestern Polytechnical University, Xi’an 710072, China

2. University of Victoria, Victoria BC V8P 5C2, Canada

Abstract

Abstract Depth data is an effective tool to locate the intelligent agent in space because it accurately records the 3D geometry information on the surface of the scanned object, and is not affected by factors like shadow and light. However, if there are many planes in the work scene, it is difficult to identify objects and process the resulting huge amount of data. In view of this problem and targeted at object calibration, this paper puts forward a depth data calibration method based on Gauss mixture model. The method converts the depth data to point cloud, filters the noise and collects samples, which effectively reduces the computational load in the following steps. Besides, the authors cluster the point cloud vector with the Gaussian mixture model, and obtain the target and background planes by using the random sampling consensus algorithm to fit the planes. The combination of target Region Of Intelligent agent (ROI) and point cloud significantly reduces the computational load and improves the computing speed. The effect and accuracy of the algorithm is verified by the test of the actual object.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3