LTSD and GDMD features for Telephone Speech Endpoint Detection

Author:

Ouzounov Atanas1

Affiliation:

1. Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia , Bulgaria

Abstract

Abstract This paper proposes a new contour-based speech endpoint detector which combines the log-Group Delay Mean-Delta (log-GDMD) feature, an adaptive twothreshold scheme and an eight-state automaton. The adaptive thresholds scheme uses two pairs of thresholds - for the starting and for the ending points, respectively. Each pair of thresholds is calculated by using the contour characteristics in the corresponded region of the utterance. The experimental results have shown that the proposed detector demonstrates better performance compared to the Long-Term Spectral Divergence (LTSD) one in terms of endpoint accuracy. Additional fixed-text speaker verification tests with short phrases of telephone speech based on the Dynamic Time Warping (DTW) and left-to-right Hidden Markov Model (HMM) frameworks confirm the improvements of the verification rate due to the better endpoint accuracy.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference42 articles.

1. 1. Baginski, M. Robust Speech Detection in High Levels of Background Noise. Imperial College, Department of Electrical and Electronic Engineering, Final Year Project Report, 2014, pp. 1-67.

2. 2. Beuyeuk, O., M. Arslan. Model Selection and Score Normalization for Text-Dependent Single Utterance Speaker Verification. - Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 20, 2012, No Sup. 2, pp. 1277-1295.

3. 3. Bengio, S., J. Marietho z. A Statistical Significance Test for Person Authentication. - In: Proc. of ODYSSEY - The Speaker and Language Recognition Workshop, 2004, pp. 237-244.

4. 4. Burileanu, C., et al. On Performance Improvement ofa Speaker Verification System Using Vector Quantization, Cohorts and Hybrid Cohort-World Models. - International Journal of Speech Technology, Vol. 5, 2002, pp. 247-257.

5. 5. Center for Spoken Language Understanding, Speech Enhancement and Assessment Resource (Sp EAR) Database. Oregon Graduate Institute of Science and Technology, September 2016. http://www.cslu.ogi.edu/nsel/data/SpEAR_lombard.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3