A kind of dual form for coupling from the past algorithm, to sample from Markov chain steady-state probability

Author:

Nasroallah Abdelaziz,Bounnite Mohamed Yasser

Abstract

Abstract The standard coupling from the past (CFTP) algorithm is an interesting tool to sample from exact Markov chain steady-state probability. The CFTP detects, with probability one, the end of the transient phase (called burn-in period) of the chain and consequently the beginning of its stationary phase. For large and/or stiff Markov chains, the burn-in period is expensive in time consumption. In this work, we propose a kind of dual form for CFTP called D-CFTP that, in many situations, reduces the Monte Carlo simulation time and does not need to store the history of the used random numbers from one iteration to another. A performance comparison of CFTP and D-CFTP will be discussed, and some numerical Monte Carlo simulations are carried out to show the smooth running of the proposed D-CFTP.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Statistics and Probability

Reference42 articles.

1. Efficient use of exact samples;Stat. Comput.,1999

2. Perfect simulation of conditionally specified models;J. R. Stat. Soc. Ser. B Stat. Methodol.,1999

3. Exact sampling with coupled Markov chains and applications to statistical mechanics;Random Structures Algorithms,1996

4. Perfect simulation for a class of positive recurrent Markov chains;Ann. Appl. Probab.,2007

5. A non-monotone CFTP perfect simulation method;Statist. Sinica,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3