1. [1] Subramanian, N., Venkatachalam, A., Subramaniam, V (2007). Prediction and Optimization of Yarn Properties using Genetic Algorithm/Artificial Neural Network, Indian Journal of Fibre & Textile Research, 32, 409-413.
2. [2] Sette,S, van Langenhove, L (2002). Optimising the fibre-to-yarn production process: Finding a blend of fibre qualities to create an optimal Price/quality yarn, AUTEX Research Journal, Vol. 19, No 1, March 2019, 2(2), 57-63.
3. [3] Malik, S. A.; Tanwari, A., Syed, U., Qureshi, R. F.; & Mengal, N. (2012). Blended Yarn Analysis: Part I—Influence of Blend Ratio and Break Draft on Mass Variation, Hairiness, and Physical Properties of 15 Tex PES/CO Blended Ring Spun Yarn. Journal of Natural Fibers, 9(3), 197-206.
4. [4] Samander Ali Malik, Assad Farooq, Thomas Gereke & Chokri Cherif (2016). Prediction of Blended Yarn Evenness and Tensile properties by using Artificial Neural Network and Multiple Linear Regression, AUTEX Research Journal, Vol. 19, No 1, March 2019, 16(2), 43-50.
5. [5] Sekerden, F (2011). Investigation on the Unevenness, Tenacity and Elongation Properties of Bamboo/Cotton Blended Yarns, Fibres & Textiles in Eastern Europe,19(3), 26-29.