Enhancement of Hydrostatic Resistance and Mechanical Performance of Waterproof Breathable Laminated Fabrics

Author:

Razzaque Abdur1,Tesinova Pavla,Hes Lubos1

Affiliation:

1. Department of Textile Evaluation , Technical University of Liberec , Studentska 1402/2, Liberec , Czech Republic

Abstract

Abstract Waterproof breathable laminated fabrics have the special property that permits water vapour to pass through but protects by preventing the entrance of liquid water. Different characteristic properties of the layered constructions of these fabrics have good influence on their hydrostatic resistance and mechanical performance. This research study presents an experiment to enhance the hydrostatic resistance and tensile strength of four different types of hydrophobic membrane laminated waterproof fabrics by considering their breathability as well. For this purpose, water repellent coating based on C6-fluorocarbon resin along with polysiloxane hydrophobic softening agent was applied on these four different types of laminated fabrics using pad-dry-cure method. The coated fabrics were characterised by performing different experiments to evaluate the effect of coating on their hydrostatic resistance and mechanical property as well as on water vapour permeability and air permeability. From the test results and analysis of variance (ANOVA), it was found that hydrostatic resistance and tensile strength of the laminated fabrics were enhanced after coating along with proper water repellent property, whereas there were no significant changes in their water vapour permeability and air permeability.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

Reference19 articles.

1. [1] Ahmad, S., Ahmad, F., Afzal, A., Rasheed, A., Mohsin, M. & Ahmad, N. (2015). Effect of weave structure on thermo-physiological properties of cotton fabrics. AUTEX Research Journal, Vol. 19, No 1, March 2019, 15(1), 30–34.

2. [2] Ahn, H. W., Park, C. H. & Chung, S.E. (2010). Waterproof and breathable properties of nanoweb applied clothing. Textile Research Journal, 81, 1438–1447.

3. [3] Boguslawska-Baczek, M. & Hes, L. (2013). Effective water vapour permeability of wet wool fabric and blended fabrics. Fibers and Textiles in Eastern Europe, 21, 67–71.

4. [4] Chen, Q., Miao, X., Mao, H., Ma, P. & Jiang, G. (2016). The comfort properties of two differential-shrinkage polyester warp knitted fabrics. AUTEX Research Journal, Vol. 19, No 1, March 2019, 16(2), 90-99.

5. [5] Chinta, Dr. S. K. & Satish, D. (2014). Studies in waterproof breathable textiles. International Journal of recent development in engineering and technology, 3, 16–20.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3