Affiliation:
1. School of Electronics and Information Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
2. School of Computer and Information Engineering , Tianjin Normal University , Tianjin 300387 , China
Abstract
Abstract
The detection of defects in yarn-dyed fabric is one of the most difficult problems among the present fabric defect detection methods. The difficulty lies in how to properly separate patterns, textures, and defects in the yarn-dyed fabric. In this paper, a novel automatic detection algorithm is presented based on frequency domain filtering and similarity measurement. First, the separation of the pattern and yarn texture structure of the fabric is achieved by frequency domain filtering technology. Subsequently, segmentation of the periodic units of the pattern is achieved by using distance matching function to measure the fabric pattern. Finally, based on the similarity measurement technology, the pattern’s periodic unit is classified, and thus, automatic detection of the defects in the yarn-dyed fabric is accomplished.
Subject
General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献