Linear regularized finite difference scheme for the quasilinear subdiffusion equation

Author:

Lapin Alexander1,Laitinen Erkki2

Affiliation:

1. Sechenov University, Moscow and Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences , Moscow , Russia .

2. Research Unit of Mathematical Sciences, University of Oulu , Oulu , Finland

Abstract

Abstract A homogeneous Dirichlet initial-boundary value problem for a quasilinear parabolic equation with a time-fractional derivative and coefficients at the elliptic part that depend on the gradient of the solution is considered. Conditions on the coefficients ensure the monotonicity and Lipschitz property of the elliptic operator on the set of functions whose gradients in space variables are uniformly bounded. For this problem, a linear regularized mesh scheme is constructed and investigated. A sufficient condition is derived for the regularization parameter that ensures the so-called local correctness of the mesh scheme. On the basis of correctness and approximation estimates for model problems with time-fractional Caputo or Caputo–Fabrizio derivatives, accuracy estimates are given in terms of mesh and regularization parameters under the assumption of the existence of a smooth solution to the differential problem. The presented results of the numerical experiments confirm the obtained asymptotic accuracy estimates.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3