Affiliation:
1. Keldysh Institute of Applied Mathematics , 125047 , Moscow , Russia
Abstract
Abstract
The present paper is devoted to a model describing a two-phase isothermal mixture, in which one of the phases obeys solid-like (namely, elastic) rheology. A fully Eulerian description is considered. To describe the stress–strain behaviour of the solid phase the elastic energy term is added to the Helmholtz free energy. The term depends on Almansi strain tensor. In its turn, the strain tensor is defined as the solution of the corresponding evolutionary equation. Considered model belongs to the phase field family. Formally it describes two-component mixture and uses mass densities of the components as order parameters. A distinctive feature of the considered model is its preliminary regularization according to the quasi-hydrodynamic framework. The dissipativity in total energy is proved when periodic boundary conditions are imposed. A spatial dissipative semi-discrete (continuous in time and discrete in space) scheme based on staggered grids is suggested. The theoretical results remain valid in the absence of the regularization. The results of a numerical study in a 2D setting are presented.
Subject
Modeling and Simulation,Numerical Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献