Operator-difference schemes on non-uniform grids for second-order evolutionary equations

Author:

Vabishchevich Petr N.12

Affiliation:

1. Nuclear Safety Institute of the Russian Academy of Sciences , Moscow , Russia

2. North-Eastern Federal University , Yakutsk , Russia

Abstract

Abstract The approximate solution of the Cauchy problem for second-order evolution equations is performed, first of all, using three-level time approximations. Such approximations are easily constructed and relatively uncomplicated to investigate when using uniform time grids. When solving applied problems numerically, we should focus on approximations with variable time steps. When using multilevel schemes on non-uniform grids, we should maintain accuracy by choosing appropriate approximations and ensuring stability of the approximate solution. In this paper, we construct unconditionally stable schemes of the first- and second-order accuracy on a non-uniform time grid for the approximate solution of the Cauchy problem for a second-order evolutionary equation. The novelty of the paper consists in the fact that these stability estimates are obtained without any restrictions on the magnitude of the step change and on the number of step changes. We use a special transformation of the original second-order differential-operator equation to a system of first-order equations. For the system of first-order equations, we apply standard two-level time approximations. We obtained stability estimates for the initial data and the right-hand side in finite-dimensional Hilbert space. Eliminating auxiliary variables leads to three-level schemes for the initial second-order evolution equation. Numerical experiments were performed for the test problem for a one-dimensional in space bi-parabolic equation. The accuracy and stability properties of the constructed schemes are demonstrated on non-uniform grids with randomly varying grid steps.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3