Numerical-statistical study of the prognostic efficiency of the SEIR model

Author:

Lotova Galiya Z.12,Lukinov Vitaliy L.12,Marchenko Mikhail A.12,Mikhailov Guennady A.12,Smirnov Dmitrii D.1

Affiliation:

1. Institute of Computational Mathematics and Mathematical Geophysics SB RAS , Novosibirsk , 630090 , Russia

2. Novosibirsk State University , Novosibirsk , 630090 , Russia

Abstract

Abstract A comparative analysis of the differential and the corresponding stochastic Poisson SEIR-models is performed for the test problem of COVID-19 epidemic in Novosibirsk modelling the period from March 23, 2020 to June 21, 2020 with the initial population N = 2 798 170. Varying the initial population in the form N = n m with m ⩾ 2, we show that the average numbers of identified sick patients is less (beginning from April 7, 2020) than the corresponding differential values by the quantity that does not differ statistically from C(t)/m, with C ≈ 27.3 on June 21, 2020. This relationship allows us to use the stochastic model for big population N. The practically useful ‘two sigma’ confidential interval for the time interval from June 1, 2020 to June 21, 2020 is about 108% (as to the statistical average) and involves the corresponding real statistical estimates. The influence of the introduction of delay on the prognosis, i.e., the incubation period corresponding to Poisson model is also studied.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,Numerical Analysis

Reference8 articles.

1. V. A. Adarchenko, S. A. Baban', A. A. Bragin, K. F. Grebenkin, O. V. Zatsepin, A. S. Kozlovskikh, V. V. Legon'kov, E. N. Lipilina, I. A. Litvinenko, P. A. Loboda, A. A. Ovechkin, G. N. Rykovatov, et al., Modelling the development of the coronavirus epidemic using differential and statistical models. RFNC-VNIITF, Preprint No. 264. Snezhinsk, 2020 (in Russian).

2. M. S. Ivanov, M. A. Korotchenko, G. A. Mikhailov, and S. V. Rogazinskii, Global weighted Monte Carlo method for the nonlinear Boltzmann equation. Comput. Math. Math. Phys. 45 (2005), No. 10, 1792–1801.

3. O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Zyatkov, A. Yu. Prikhodko, N. M. Prokhoshin, and M. A. Shishlenin, Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk regions. Numerical Analysis and Applications 13 (2020), No. 4, 332–348.

4. M. Marchenko, PARMONC — A software library for massively parallel stochastic simulation. Lect. Notes Comp. Sci. 6873 (2011), 302–315.

5. M. A. Marchenko and G. A. Mikhailov, Distributed computing by the Monte Carlo method. Automation and Remote Control 68 (2007), No. 5, 888–900.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3