Stability analysis of functionals in variational data assimilation with respect to uncertainties of input data for a sea thermodynamics model

Author:

Shutyaev Victor12,Parmuzin Eugene12,Gejadze Igor3

Affiliation:

1. Marchuk Institute of Numerical Mathematics , Russian Academy of Sciences , Moscow , 119333 , Russia

2. Moscow Institute for Physics and Technology , Dolgoprudny , 141701, Moscow region , Russia

3. INRAE, 361 Rue J. F. Breton , BP 5095, 34196 , Montpellier , 34196 , France

Abstract

Abstract The problem of stability and sensitivity of functionals of the optimal solution of the variational data assimilation of sea surface temperature for the model of sea thermodynamics is considered. The variational data assimilation problem is formulated as an optimal control problem to find the initial state and the boundary heat flux. The sensitivity of the response functions as functionals of the optimal solution with respect to the observation data is studied. Computing the gradient of the response function reduces to the solution of a non-standard problem being a coupled system of direct and adjoint equations with mutually dependent initial and boundary values. The algorithm to compute the gradient of the response function is presented, based on the Hessian of the original cost functional. Stability analysis of the response function with respect to uncertainties of input data is given. Numerical examples are presented for the Black and Azov seas thermodynamics model.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,Numerical Analysis

Reference25 articles.

1. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, Numerical algorithm of variational assimilation of the ocean surface temperature data. J. Comp. Math. Math. Phys. 48 (2008), 1371–1391.

2. V. V. Alekseev and V. B. Zalesny, Numerical model of the large-scale ocean dynamics. In: Computational Processes and Systems. Nauka, Moscow, 1993 (in Russian).

3. J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. New York, Springer, 2000.

4. N. A. Diansky, A. V. Bagno, and V. B. Zalesny, Sigma model of global ocean circulation and its sensitivity to variations in wind stress. Izv. Atmos. Ocean. Phys. 38 (2002), No. 4, 477–494.

5. G. Chavent, About the stability of the optimal control solution of inverse problems. Mathematical and Numerical Methods of Inverse and Improperly Posed Problems (Ed. G. Anger). Akademie Verlag, Berlin, 1979.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3