Microstrip Hexagonal Fractal Antenna for Military Applications

Author:

Gupta Manisha,Mathur Vinita,Kumar ArunORCID,Saxena Virendra,Bhatnagar Deepak

Abstract

Abstract Novel and miniaturized hexagonal Microstrip patch antenna design is presented in this paper. Patch is fractured using Sierpinski and Koch structures to make the antenna applicable for multiband applications. Additionally ground is defected to enhance the bandwidth and further size is reduced. Material FR-4 (εr = 4.4)has been chosen to design proposed antenna and substrate thickness as 1.59 mm. Microstrip feed technique is used as it provides better results. Gain obtained in this case is 5.57 dB, 7.49 dB and 4.02 dB with bandwidth as 606.8 MHz, 507 MHz and 2 GHz at 8.3 GHz, 12.6 GHz and 17.6 GHz resonant frequencies. The antenna is better to other designs in terms of parameters like bandwidth, directivity, polarization, gain, return loss and dimension. The antenna provides application for military appliances. A good concord is obtained in Simulated and measured results.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Penta-band Planar Monopole Circular Antenna Design Using Inverted L-Shaped Slot for UWB Application;Journal of Electronic Materials;2023-10-10

2. The Possibilities of Using Fractal Antennas in Modern Wireless Communication Technologies;2023 IEEE International Conference on Smart Information Systems and Technologies (SIST);2023-05-04

3. Polarization Reconfigurable Sequentially Rotated Dielectric Resonator Antenna Array;2023-03-21

4. Design and Fabrication of Microstrip Hexagonal Fractal Array Antenna for Wideband Applications;Proceedings of the 2nd International Conference on Signal and Data Processing;2023

5. Hexagonal Fractal Multiband Antenna for Wireless Communication;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3