Gain and Bandwidth Enhancement of Tetracuspid-shaped DRA Mounted with Conical Horn

Author:

Kumar Pramod,Dwari Santanu,Utkarsh ,Agrawal N. K.,Kumar Jitendra

Abstract

Abstract A novel Tetracuspid-shaped dielectric resonator antenna (DRA) mounted with conical horn is presented and investigated for broadband applications. The dielectric used for investigation is a ceramic composite material having a dielectric constant ( $\varepsilon_r$) of 12.9. Tetracuspid-shaped resonator geometry achieves a broadband impedance bandwidth of 70.9 % for |S11|<‒10 dB, ranging from 2 GHz to 4.2 GHz. Tetracuspid-shaped reduces the DRA volume by 78 % (without horn) as compared to conventional cylindrical DRA; with reduced volume of 14.4 cm3 which diminishes the cost and weight. Gain of proposed antenna is further enhanced up to 9.5 dBi in operating band by mounting a conical horn. Achieved average peak gain is ~7 dBi. Proposed antenna covers bands of different wireless communication systems like Wi-Max and WLAN (2.4 GHz, 2.5 GHz, 3.3 GHz and 3.5 GHz). The simulated results are validated by experimentally measured outcomes and these are well in agreement.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wide Band and High Gain Hollow Cylindrical Dielectric Resonator Antenna Design using Aluminum Cavity for Ku Band Applications;2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON);2022-12-12

2. Design of 3D Printed Multi-Wavelength DRA;IETE Technical Review;2020-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3