Compact Ultra-Wide Upper Stopband Microstrip Dual-Band BPF Using Tapered and Octagonal Loop Resonators

Author:

Khani Shiva1,Danaie Mohammad1,Rezaei Pejman1,Shahzadi Ali1

Affiliation:

1. Electrical and Computer Engineering Faculty, Semnan University, Semnan3513119111, Iran

Abstract

AbstractIn this paper, a microstrip dual-band bandpass filter (DBBPF) based on an octagonal loop resonator (OLR), tapered resonators and open bended stubs (OBSs) is designed and analysed. The proposed structure produces two passbands with the centre frequencies of 3.65 and 5.67 GHz. The marked advantages of the proposed filter are as follows: Two centre frequencies can be individually tuned. The bandwidth of the upper passband can also be controlled. Furthermore, the DBBPF benefits from an ultra-wide upper stopband from 5.9 up to 21 GHz with an attenuation level of higher than 20 dB and a small size of 0.21 λg × 0.26 λg, where λg is the guided wavelength at 3.65 GHz. The designed filter is horizontally and vertically symmetrical leading to a reciprocal S matrix. Other remarkable specifications of the proposed filter are the insertion loss < 0.62 dB, the return loss > 20.2 dB and sharp response. To provide an analytical description, the LC equivalent circuits of initial and main resonators are presented. Acceptable similarity between simulated and measured results verifies the design process.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

Reference108 articles.

1. Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods;Physica E: Low-dimensional Syst. Nanostruct.,2019

2. Compact dual-band bandpass filter using open stub-loaded stepped impedance resonator with cross-slots;Int. J. Microw. Wireless Tech.,2017

3. Design of high performance microstrip lpf with analytical transfer function;Frequenz,2017

4. A simple and effective method for 1.9–3.4-GHz tunable diplexer with compact size and constant fractional bandwidth;IEEE. Trans. Microw. Theory Tech.,2016

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3