Biomarkers to target and silence stemness of breast cancer stem cell model: silencing MDR1 by siRNA

Author:

Yıldırım Gamze1ORCID,Kars Meltem D.2ORCID,Kars Gökhan3ORCID,Kılıç Hamdi Ş.4ORCID

Affiliation:

1. Graduate School of Sciences, Department of Nanotechnology and Advanced Materials , Selçuk University , Konya , Turkey

2. Faculty of Engineering, Department of Biomedical Engineering , Necmettin Erbakan University , Konya , 42140 , Turkey

3. Faculty of Science, Department of Molecular Biology and Genetics , Necmettin Erbakan University , Konya , Turkey

4. Faculty of Science, Department of Physics , Selçuk University , Konya , Turkey

Abstract

Abstract Objectives Aim of the study was to reveal new biomarker genes to target breast cancer stem-like cells (BCSC-like) and then sensitize BCSC-like cells to chemotherapy by silencing MDR1 gene found to be the most suitable target. Methods Drug resistance associated genes were screened by cDNA microarray to unveil biomarker genes in drug resistance breast cancer model cells. Drug resistance was then reversed by silencing MDR1 gene in BCSC-like cells. The effect of silencing was monitored by real-time cell proliferation analysis. Differential expressions of MDR1, ALDH1A3, EGFR and BAG4 genes were identified by real-time PCR. P-glycoprotein (P-gp) expression level and its activity were investigated by Western blot and flow cytometry measurements, respectively. Results 16 new biomarker genes were identified upon gene expression analysis by cDNA microarray. MDR1 gene was selected as the most potent target gene and silencing of it caused down-regulation of MDR1, ALDH1A3, EGFR, BAG4 expression and P-glycoprotein activity and expression in BCSC-like cells. At the end, silenced BCSC-like cells were found to be more responsive to paclitaxel therapy. Conclusions In conclusion, siMDR1 silencing is an effective way to reverse multidrug resistance and malignancy. New biomarker genes revealed in this study require to be investigated to target stemness of BC.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3