Experimental study on mechanical properties of coal gangue base geopolymer recycled aggregate concrete reinforced by steel fiber and nano-Al2O3

Author:

Qin Libing123,Xu Zhong2,Liu Qingfeng2,Bai ZhiJie2,Wang Chunjian2,Luo Qiang1,Yuan Yuan2

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University , Chengdu 610031 , China

2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment and Civil Engineering, Chengdu University of Technology , Chengdu 610059 , China

3. Engineering Technology Research Center, Sichuan Mingyang Construction Engineering Management Co. Ltd. , Chengdu 610017 , China

Abstract

Abstract Using recycled aggregates to prepare geopolymer concrete plays an essential role in reducing dependence on natural resources and solving the problem of waste accumulation. However, the application of geopolymer recycled aggregate concrete (GRC) has been greatly limited due to the defects in the quality of recycled aggregates and the limitations of the brittleness of concrete materials. Therefore, the work is dedicated to improving GRC properties and exploring the mechanism of action of steel fiber (SF) and nano-Al2O3. In this study, calcined gangue, slag, fly ash, and recycled aggregate were used as raw materials, the influence of SFs (0–1.25 vol%) was first explored by single factor analysis, and on this basis, the effect of nano-Al2O3 (NA) (0–2 wt%) on the GPC performance of SF was studied. The microstructure of GRC was analyzed by scanning electron microscopy. The test results showed that adding SF could significantly improve the splitting tensile and flexural strength of GRC, among which 0.75 vol% is the most excellent. However, the increase in compressive strength could be more apparent. The addition of NA can make up for the lack of SF in improving compressive performance. When NA content is 1 wt%, the version of GRC is most apparent. Adding 1% NA has the most significant advance in GRC performance. The microstructure analysis showed that the NA could promote the polymerization reaction, generate more gel, and make the contact interface between SF and matrix more compact, thus improving the strength of GRC.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3