Recent developments in the mechanical properties of hybrid fiber metal laminates in the automotive industry: A review

Author:

Xiao Hanyue1,Sultan Mohamed Thariq Hameed123,Shahar Farah Syazwani1,Gaff Milan45,Hui David6

Affiliation:

1. Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia

2. Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia

3. Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact , 63000 Cyberjaya , Selangor , Malaysia

4. Faculty of Civil Engineering, Czech Technical University in Prague, Experimental Centre , Thakurova 7 , 166 29 Prague 6 , Czech Republic

5. Department of Furniture, Designand Habitat (FFWT), Mendel University in Brno , Zemědělská 1665 , 613 00 Brno-sever, Černá Pole , Czech Republic

6. Department of Mechanical Engineering, University of New Orleans , New Orleans , Louisiana , United States of America

Abstract

Abstract In the face of fierce competition in the automotive market, severe environmental problems, and the consistent enhancement of consumer demands for vehicle performance, research and development for new automotive materials have increased. Fiber metal laminate (FML) is a representative hybrid composite in recent years but the application of FMLs in the automotive industry is still rare. In order to boost the strengths and applications of FMLs, a lot of effort has been put into enhancing their mechanical properties. In this review article, up-to-date information on the mechanical performance of FMLs for automotive components is presented. The mechanical testing methods, materials selection, structure design, fabrication methods, and the application of hybrid FMLs were explored. The objective of this review article is to study different factors that influence the mechanical properties of FMLs and provide some optimization directions from various aspects. From recent research, there will be great opportunities for hybrid FMLs utilizing natural fibers and bio-polymers in the automotive field in the future.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3