Fe nanoparticle-functionalized ordered mesoporous carbon with tailored mesostructures and their applications in magnetic removal of Ag(i)

Author:

Zhang Wenjuan1,Li Yuheng2,Ran Mengyu2,Wang Youliang3,Ding Yezhi2,Zhang Bobo2,Feng Qiancheng2,Chu Qianqian12,Shen Yongqian12,Sheng Wang12

Affiliation:

1. State Key Laboratory for Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology , Gansu , Lanzhou, 730050 , China

2. School of Materials Science and Engineering, Lanzhou University of Technology , Gansu , Lanzhou , 730050 , China

3. School of Mechanical and Electrical Engineering, Lanzhou University of Technology , Gansu , Lanzhou , 730050 , China

Abstract

Abstract Fe nanoparticle-functionalized ordered mesoporous carbon (Fe0/OMC) was synthesized using triblock copolymers as templates and through solvent evaporation self-assembly, followed by a carbothermal reduction. Fe0/OMC had three microstructures of two-dimensional hexagonal (space group, p6mm, Fe0/OMC-1), body centered cubic (Im3̄m, Fe0/OMC-2), and face centered cubic (Fm3̄m, Fe0/OMC-3) which were controlled by simply adjusting the template. All Fe0/OMC displayed paramagnetic characteristics, with a maximum saturation magnetization of 50.1 emu·g−1. This high magnetization is advantageous for the swift extraction of the adsorbent from the solution following the adsorption process. Fe0/OMC was used as an adsorbent for the removal of silver ions (Ag(i)) from aqueous solutions, and the adsorption capacity of Fe0/OMC-1 was enhanced by the functionalization of Fe0. Adsorption property of Fe0/OMC-1 was significantly higher than that of Fe0/OMC-2 and Fe0/OMC-3, indicating that the long and straight ordered pore channels were more favorable for adsorption, and the adsorption capacity of Ag(i) on Fe0/OMC-1 was 233 mg·g−1. The adsorption process exhibited conformity with both the pseudo-second-order kinetic model and the Freundlich model, suggesting that the dominant mechanism of adsorption involved multilayer adsorption on heterogeneous surfaces.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3