Effect of superplasticizer in geopolymer and alkali-activated cement mortar/concrete: A review

Author:

Anudeep Potluri1,Reddy M. Achyutha Kumar1,Khed Veerendrakumar C.2,Adamu Musa3,Varalakshmi Mada1,Ibrahim Yasser E.3,Ahmed Omar Shabbir3

Affiliation:

1. Department of Civil Engineering, Koneru Lakshmaiah Education Foundation , Guntur , Vaddeswaram , India

2. Department of Civil Engineering, KLE Technological University DR. M.S. Sheshgiri Campus , Udyambag, Belagavi , Karnataka, 590008 , India

3. Engineering Management Department, College of Engineering, Prince Sultan University , 11586 , Riyadh , Saudi Arabia

Abstract

Abstract The cement and construction industry creates around 10% of the global carbon footprint. Geopolymer and alkali-activated concrete provide a sustainable solution to conventional concrete. Due to its disadvantages, the practical usage of geopolymer and alkali-activated concrete is limited. Workability is one of the issues faced in developing geopolymer and alkali-activated concretes. Plenty of research was conducted to provide a solution to enhance the ability to use different superplasticizers (SPs). The present article extensively reviews the effects of SPs on geopolymer and alkali-activated concretes. The research articles published in the last 5 years in high-quality journals are considered for the chemical composition of the different SPs and analyses of their exact impact on geopolymer and alkali-activated cement mortar and concrete. Later, the impact of SPs on the normal consistency and setting times of cement mortar, workability, compressive strength, flexural strength, split tensile strength, microstructure, and water absorption of geopolymer and alkali-activated concrete was determined. SPs improve the geopolymer and alkali-activated concretes upon their use in desired dosages; more dosage leads to negative effects. Therefore, selecting the optimal superplasticizer is essential since it impacts the performance of the geopolymer and alkali-activated concrete.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3