Damage constitutive model of jointed rock mass considering structural features and load effect

Author:

Sun Bing1,Yang Peng1,Luo Yu1,Deng Bo1,Zeng Sheng2

Affiliation:

1. School of Civil Engineering, University of South China , Hengyang 421001 , China

2. School of Resource and Environment and Safety Engineering, University of South China , Hengyang 421001 , China

Abstract

Abstract Rock masses in underground engineering are usually damaged, which are caused by rock genesis and environmental stress. Studying the constitutive relationship between rock strength and deformation under loading is crucial for the design and evaluation of such scenarios. The new damage constitutive model considering the dynamic change of joint damage was developed to describe the behavior of rocks under loading in this work. First, considering the influence of jointed rock mass structural features in their entirety, the Drucker–Prager criterion and the Hoek–Brown criterion were combined. Second, based on the idea of macro–micro coupling, the calculation formulae of damage variables were derived. Finally, the damage constitutive model of the jointed rock mass was established, and the proposed model was fitted and compared with the test data. Results show that the variation rules for damage value and peak strength are opposite, and the stress–strain is highly sensitive to changes in the parameter s of the model. Moreover, the proposed model can accurately describe the effect of joint deterioration on the entire process of rock mass compression failure, which shows that the damage constitutive models are useful for evaluating the strength characteristics of jointed rock mass in engineering practice.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3