Influence of different material parameters on nonlinear vibration of the cylindrical skeleton supported prestressed fabric composite membrane

Author:

Liu Changjiang1,Wang Mengfei2,Zheng Zhoulian3,Liu Jian1,Xie Haibing2,Jiang Su2,Hui David4

Affiliation:

1. School of Civil Engineering , Guangzhou University , Guangzhou , China

2. College of Environment and Civil Engineering , Chengdu University of Technology , Chengdu , China

3. School of Civil Engineering , Chongqing University , Chongqing , , China

4. Department of Mechanical Engineering , University of New Orleans , New Orleans , LA , United States of America

Abstract

Abstract In order to study the influence of geometric nonlinearity and material parameters on the free vibration behavior of the cylindrical skeleton supported prestressed fabric composite membrane. In this paper, based on von Karman's large deflection theory and D’Alembert's principle, the governing equations of nonlinear viscous damped prestressed free vibration of frame supported anisotropic membrane structures were established. By using Galerkin and KBM perturbation method, the analytical expressions of frequency function, displacement function and mode shape of nonlinear free vibration were obtained. In order to verify the effectiveness and effective range of the method, the fourth order Runge-Kutta method was used for numerical calculation. The calculation examples of membrane material parameters were given. The calculation and analysis of different membrane prestress, different length width ratio, different rise span ratio and different material parameters (elastic modulus ratio, viscous damping and material density) were carried out. The results were compared with the numerical results obtained by Runge-Kutta method to verify the accuracy of the method. The research results of this paper provide a theoretical reference for the selection of membrane materials, the subsequent calculation of wind-induced stability of steel skeleton membrane structure and the design of wind-driven rain resistance.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3