Study on physical and mechanical properties of complex-phase conductive fiber cementitious materials

Author:

Li Jiuyang1,Wang Zhenwei1,Guo Jinpeng1,Luo Jingwei1,Fan Xinmei1,Zhu Yuepeng1

Affiliation:

1. School of Civil Engineering, Changchun Institute of Technology , Changchun , 130012 , China

Abstract

Abstract With the continuous upgrading of infrastructure construction and the gradual development of theoretical research about engineering construction, higher performance requirements have been put forward for concrete materials. Therefore, to meet the engineering quality requirements of various concrete structures, the research direction of engineering materials has shifted towards developing new concrete with high strength, high ductility, high toughness, and other multifunctional properties. Mixing two or more types of fibers with conductive properties with the cement matrix material allows various fibers to leverage their strengths and weaknesses, thereby utilizing their respective characteristics. This results in the formation of a complex-phase conductive fiber cementitious material (CFCM), which enhances the safety, durability, and toughness of the structure. It enables the engineering structure to exhibit intelligence and resourcefulness, thereby improving its service life and reducing the full life cycle cost of the cementitious material structure. Additionally, this approach relatively eases the demand for concrete materials and reduces material consumption. This method represents one of the research directions for new concrete. Complex-phase CFCMs are essentially smart materials capable of sensing not only compressive or tensile stresses but also temperature. The emergence of CFCM represents a significant step forward in enhancing the mechanics, functionality, and sustainability of modern infrastructure. In this experiment, an orthogonal test involving 16 working conditions with three factors and four levels was designed, with steel fiber (SF) type, SF content, and carbon fiber (CF) content as the factors. The study focused on the physical and mechanical properties of composite conductive fiber cement-based materials containing both SF and CF. Performance indicators such as flexural strength, volume resistivity, and energized temperature rise of the composite conductive fiber cement-based materials were tested. The analysis of orthogonal tests produced the following results regarding the degree of influence of each factor on the mechanical and physical properties: the order of influence on flexural strength was SF doping > SF type > CF doping. Further analysis revealed that the best combination was A4B4C4. The relationship between the effect of each factor on resistivity is as follows: carbon fiber doping > SF doping > SF type. Comparing the weights between the levels, it can be observed that the optimal combination of conductivity schemes is also A3B4C4. SF and CFs, respectively, enhanced the mechanical and physical properties of complex-phase conductive fiber cementitious materials. The results of the temperature rise test on cementitious materials concluded that there is a certain relationship between the temperature rise and electrical conductivity. Specifically, the higher the electrical conductivity, the greater the temperature rise observed. Through orthogonal analysis of electrical conductivity, disregarding the effect of the non-significant influence factor SF type on the conductive heating test, the impact of two factors, CF doping and SF doping, on the heating test was investigated under 16 sets of conditions, and the data were analyzed visually. The optimal mix ratio for the test is A3B4C4, determined through comprehensive optimization of orthogonal and intuitive analyses. This means that the optimal physico-mechanical properties are achieved when using copper-plated SFs, with a SF dosage of 1.25% and a CF dosage of 0.48%. As a preceding study in the field of intelligent concrete, this experiment explores the research path of intelligent concrete, which holds positive significance for subsequent, more intricate research endeavors.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3