Magnetic moment centers in titanium dioxide photocatalysts loaded on reduced graphene oxide flakes

Author:

Guskos Niko1,Zolnierkiewicz Grzegorz1,Guskos Aleksander1,Aidinis Konstantinos2,Wanag Agnieszka3,Kusiak-Nejman Ewelina3,Narkiewicz Urszula3,Morawski Antoni W.3

Affiliation:

1. Department of Technical Physics , West Pomeranian University of Technology in Szczecin , Al. Piastow 48 , Szczecin , Poland

2. Department of Electrical Engineering , Ajman University of Science and Technology , PO Box 346 , Ajman , United Arab Emirates

3. Department of Inorganic Chemical Technology and Environment Engineering , West Pomeranian University of Technology in Szczecin , Pułaskiego 10 , Szczecin , Poland

Abstract

Abstract A whole series of titania nanocomposites modified with reduced graphene oxide (rGO) was prepared using solvothermal method followed by calcination. Modification of titania with rGO has been found to lead to better photocatalytic properties. The highest photocatalytic performance was obtained at calcination temperature of 600°C. Electron paramagnetic resonance/ferromagnetic resonance measurements showed oxygen defects and ferromagnetic ordering systems. The linewidth of resonance line of oxygen defects decreased linearly with calcination temperature increasing up to 600°C and an accompanying growth of mean crystallite size of anatase phase. The integrated resonance line intensity of oxygen defects depended on the calcination temperature and caused a very large increase in the intensity of resonance lines originating from oxygen defects, because inert atmosphere of calcination was enhanced by graphene presence. The occurrence of magnetic ordering system significantly influenced the performance of photocatalytic processes by changing the amount of oxygen defects.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3