Multifunctional engineered cementitious composites modified with nanomaterials and their applications: An overview

Author:

Haruna Sani1,Adamu Musa2,Ibrahim Yasser E.2,Haruna Sadi I.1,Seif ElDin Hany M.3,Hamza Mukhtar Fatihu4,Azab Marc3

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Bayero University Kano , Kano , Nigeria

2. Engineering Management Department, College of Engineering, Prince Sultan University , 11586 , Riyadh , Saudi Arabia

3. College of Engineering and Technology, American University of the Middle East , Egaila 54200 , Kuwait

4. Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University , Alkharj 16273 , Saudi Arabia

Abstract

Abstract Due to their advantages such as high tensile strength, low cost of production, easy manufacturing methods, and ease of use, cementitious materials are extensively utilized in the construction industry. The applications of nanomaterials in cementitious materials have been found to enhance their properties. It allows molecular changes to improve the material behaviour and the performance of civil infrastructure structures, including buildings and highways. Owing to the high ductility of polyvinyl alcohol-engineered cementitious composites (ECCs), it was suggested to be used in steel-reinforced structural elements to enhance the strength and ductility of the components. The presence of hybrid fibres provided increased shattering resistance with decreased scabbing, spalling, destruction, and damage zone and better absorption of energy through distributed microcracking. The presence of nanomaterials in ECCs modifies its atomic macroscopic scales, enhancing its mechanical and microstructural properties. The versatile properties of nanomaterials offer immense potential to cementitious composite for structural applications.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3