Copper ternary oxides as photocathodes for solar-driven CO2 reduction

Author:

Gonzaga Ian Lorenzo E.12,Mercado Candy C.2

Affiliation:

1. Department of Engineering Science, University of the Philippines Los Baños , Los Baños , Philippines

2. Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines Diliman , Diliman , Philippines

Abstract

Abstract The sun’s energy, though free and virtually limitless, is a largely unexploited resource, as its conversion into a storable form presents several technological challenges. A promising way of capturing and storing solar energy is in the form of “solar fuels,” in a process termed artificial photosynthesis. In a photoelectrochemical (PEC) system, the reduction of CO2 to carbon-based fuels is driven on the surface of an illuminated semiconductor electrode. Through the decades, many different classes of semiconducting materials have been studied for this purpose, to varying successes. Because of their cheap and abundant nature, semiconducting transition metal oxides are good candidates to realize this technology in an economic scale and have thus attracted considerable research attention. In this review article, the progress achieved with a specific class of metal oxides, namely, the copper ternary oxides such as copper iron oxide and copper bismuth oxide, for PEC CO2 reduction is examined. Although there have been significant advances in terms of strategies to improve the efficiency and stability of these materials, further studies are warranted to address the many challenges to PEC CO2 reduction and solar fuel production.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3