Luminescence and temperature-sensing properties of Li+, Na+, or K+, Tm3+, and Yb3+ co-doped Bi2WO6 phosphors

Author:

Xiakeer Arepati12,Wang Linxiang12,Maimaiti Munire12,Feng Xin12,Jiang Mengliang12

Affiliation:

1. College of Physics and Electronic Engineering, Xinjiang Normal University , Urumqi 830054, Xinjiang , China

2. Xinjiang Key Laboratory of Luminescent Minerals and Optical Functional Materials , Urumqi 830054, Xinjiang , China

Abstract

Abstract A series of Li+, Na+, or K+, Tm3+, and Yb3+ co-doped Bi2WO6 upconversion phosphors were prepared by a high-temperature solid-phase method at 800°C for 3 h. X-ray diffraction showed that Li+, Na+, K+, Tm3+, and Yb3+ doping did not affect the orthorhombic structure of the Bi2WO6 matrix. Scanning electron microscopy images of the Bi2WO6:1% Tm3+, 6% Yb3+ and 1% Li+, 1% Na+, or 1% K+-doped Bi2WO6:1% Tm3+, 6% Yb3+ samples reveal irregular particles with a 0.5–5 µm particle size range; upon Na+ or K+ doping, the particle size increases and the particle surface becomes smooth. EDS analysis shows that the above ions are well incorporated into the powder particles. At 298 K, the relative temperature sensitivities are 0.00144, 0.0016, 0.0024, and 0.0018 K−1 for the 1% Tm3+, 6% Yb3+:Bi2WO6 samples without alkali metal ions and doped with 1% Li+, 1% Na+, or 1% K+ based on the thermally coupled energy level 3F3/3F2 characterization temperature. However, under the same conditions, when using the nonthermally coupled level 3F3/1G4 characterization temperature, the relative temperature sensitivities of these four samples are 0.0378, 0.0166, 0.046, and 0.0257 K−1, increasing by 26.3, 10.3, 19.1, and 13.9 times, respectively. The relative temperature sensitivities of the 1% Na+, 1% Tm3+, and 6% Yb3+:Bi2WO6 samples are the highest at 298 K.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3