A sawtooth constitutive model describing strain hardening and multiple cracking of ECC under uniaxial tension

Author:

Li Lingyu1,Chen Hongkang1,Yu Hongfa1,Ma Haiyan1,Fan Haotian1,Chen Xiaoqing1,Gao Yuning1

Affiliation:

1. Department of Civil Engineering, College of Civil Aviation, Nanjing University of Aeronautics and Astronautics , Nanjing , 211100 , China

Abstract

Abstract By collecting engineered cementitious composite (ECC) uniaxial tensile experimental research data, aiming at the multiple cracking characteristics of the strain hardening stage of the ECC stress–strain curve, a theoretical model describing the constitutive relationship of the ECC uniaxial tensile stress–strain – the multiple cracking sawtooth model – is proposed. Several model parameters were obtained with the fitting analysis of many ECC uniaxial tensile stress–strain curves. The application conditions and influencing factors of the three-order multi-crack “sawtooth” model of polyvinyl alcohol (PVA)-ECC and polyethylene (PE)-ECC and the four-order multi-crack “sawtooth” model of PVA-ECC are studied. The result shows that the higher the fiber reinforcement index, the better the tensile properties of ECC. The fiber reinforcement index is linearly correlated with the initial crack stress and ultimate tensile stress of PVA-ECC and with the ultimate tensile stress and ultimate tensile strain of PE-ECC. The characteristic points of PVA-ECC in the multi-crack cracking stage are as follows: the greater the initial cracking strain, the smaller the ultimate tensile strain, showing an exponential correlation; The greater the initial cracking stress is, the greater the ultimate tensile stress is, and the two are linearly correlated.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3