Parameter optimization for ultrasonic-assisted grinding of γ-TiAl intermetallics: A gray relational analysis approach with surface integrity evaluation

Author:

Yang Song1,Zhang Guangjin2,Xiao Guoqing2

Affiliation:

1. School of Software, Henan Polytechnic University , Jiaozuo , 454000 , China

2. School of Mechanical and Power Engineering, Henan Polytechnic University , Jiaozuo , 454000 , China

Abstract

Abstract The processing of γ-TiAl intermetallic compound (Ti–45Al–2Mn–2Nb) is essential for manufacturing aircraft engine components, known for their challenging machinability. This study delved into the machining performance of γ-TiAl intermetallic compound through ultrasonically assisted grinding experiments. Various grinding parameters, such as wheel rotation speed (v s), feed rate (v w), depth of grinding (a p), and ultrasonic amplitude (A), were investigated to understand their effects on grinding forces, temperatures, and surface quality. Gray relational analysis (GRA) and analysis of variance were used to analyze experimental data and ascertain the optimal machining parameters for ultrasonically assisted grinding of γ-TiAl intermetallic compound. Additionally, post-processing surface integrity, encompassing surface roughness, morphology, and residual stresses, was evaluated. The optimal grinding parameter combination was determined as F n = 3.22 N, F t = 1.08 N, and T = 174°C through GRA. Under the selected machining conditions, the depth of cut exerted the most significant influence on the grinding force and temperature, while the effect of wheel speed was the weakest. The surface roughness (Ra) of the workpiece increased with increasing feed rate and depth of the cut but decreased gradually with increasing wheel speed. Upon applying ultrasonic vibration, there was a notable decrease in surface roughness, ranging from 20.12 to 7.67%. However, the increase in the wheel speed, depth of cut, and feed rate inhibited the reduction of roughness due to ultrasonic vibration. Ultrasonic vibration effectively reduced the profile height of the workpiece surface, with a maximum reduction of 1.94 μm within the selected range. Nonetheless, as the wheel speed, depth of cut, and feed rate increased, the effectiveness of this reduction gradually diminished.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3