Hybrid bio-fiber/bio-ceramic composite materials: Mechanical performance, thermal stability, and morphological analysis

Author:

AL-Oqla Faris M.1ORCID,Hayajneh Mohammed T.2ORCID,Al-Shrida Mu’ayyad M.2ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, The Hashemite University , P.O box 330127 , Zarqa 13133 , Jordan

2. Industrial Engineering Department, Faculty of Engineering, Jordan University of Science and Technology , Irbid , Jordan

Abstract

Abstract Hybrid composite materials are becoming more desirable for various industrial applications to enhance sustainability and develop better environmentally friendly green products. This work aims to enhance the synergy of both bio-ceramic eggshell materials and date palm leaflet (DPL) fillers to integrate their advantages in an optimized hybridization manner to enhance their significance in producing novel biomaterials with improved desired mechanical, thermal, and morphological characteristics. Different weight percentages of hybrid green reinforcement (poultry eggshells and DPLs) were utilized in various hybridization ratios (3:7, 5:5, 7:3), (15:5, 10:10, 5:15), and (20:10, 15:15, 10:20) to fabricate 10, 20, and 30 wt% novel biomaterials. The regularly chopped DPLs were immersed in various concentrations of sodium hydroxide at different soaking times to optimize and improve their bonding with the polypropylene (PP) matrix. The mechanical, thermal, and morphological properties of the fabricated hybrid composites were investigated. The results have revealed that certain hybridization ratios could improve the tensile and flexural modulus by up to 26 and 11%, respectively. According to the thermogravimetric analysis and its derivatives, hybridization was also found to have an excellent influence on the thermal stability of the PP matrix. Regarding morphological micrographs utilizing scanning electron microscopy, DPLs exhibited good bonding, whereas eggshell fillers depicted different behaviors of bonding depending on their surface topologies. It was also found that hybridization with higher eggshells had better effects on flexural strength than date palms, regardless of their weight percentages. The 30 wt% hybridization case was found to be capable of improving the modulus of elasticity of composites to 838 MPa and the flexural modulus to 735 MPa, which are suitable for various structural applications and green products.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3