Facile synthesis of g-C3N4 nanosheets for effective degradation of organic pollutants via ball milling

Author:

Luo Xi1,Dong Yuqin1,Wang Dongying1,Duan Yujie1,Lei Ke1,Mao Linjiao1,Li Ying1,Zhao Qiang2,Sun Yan1

Affiliation:

1. School of Mechanical Engineering, Chengdu University , Chengdu , 610106 , China

2. School of Chemical Engineering, Sichuan University , Chengdu , 610065 , China

Abstract

Abstract Graphitic carbon nitride (g-C3N4) has attracted extensive research interest in pollutants remediation. However, the photocatalytic activity of g-C3N4 was significantly limited by its small specific surface area. In this work, a green, high-energy ball milling method was used to fabricate g-C3N4 nanosheets. The structure, morphology, and optical properties of the prepared g-C3N4 nanosheets were characterized. The effect of ball milling parameters on the photocatalytic performance evaluated by Rhodamine B (RhB) and tetracycline (TC) was investigated systemically. Among the tested samples, the g-C3N4 sample milled with a 4 mL isopropanol solution at a rotation speed of 420 rpm, ball-to-powder weight ratio of 10:1, and milling time of 24 h exhibited the highest RhB degradation efficiency of 91.4% and TC degradation efficiency of 70.2%. The enhanced photocatalytic activity after ball milling was ascribed to the increase in specific surface area and efficient separation of electron–hole pairs. The trapping experiment indicated that holes and superoxide radicals were the main active species in the degradation reaction. Moreover, the photocatalytic degradation mechanism of organic pollutants on g-C3N4 nanosheets was also discussed in detail.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3