Synthesis, characterization, and application of the novel nanomagnet adsorbent for the removal of Cr(vi) ions

Author:

Alsaiari Norah Salem1,Alsaiari Majed Salem2,Alzahrani Fatimah Mohammed1,Amari Abdelfattah3,Tahoon Mohamed A.45

Affiliation:

1. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia

2. Department of Chemistry, College of Science, King Abdulaziz Military College , Riyadh 13952 , Saudi Arabia

3. Department of Chemical Engineering, College of Engineering, King Khalid University , P.O. Box 9004 , Abha 61411 , Saudi Arabia

4. Department of Chemistry, College of Science, King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia

5. Chemistry Department, Faculty of Science, Mansoura University , Mansoura 35516 , Egypt

Abstract

Abstract The synthesis of an efficient adsorbent to remove chromium ions from water is challenging. Therefore, in this study, a new nanomagnet composite (Fe3O4/biochar/ZIF-8) was synthesized by a one-pot hydrothermal method using a metal–organic framework (MOF, ZIF-8) as a sacrificial template, citrus peels as a source of biochar, and iron oxide nanoparticles for magnetization. The synthesized nanocomposite showed a high efficiency toward the adsorption of Cr(vi) ions. The adsorption study showed that the experimental data were well-described using the Langmuir isotherm model and pseudo-second-order model. According to the Langmuir model, the adsorption capacities toward Cr(vi) adsorption were 77 and 125 mg·g−1 for Fe3O4/biochar and Fe3O4/biochar/ZIF-8, respectively, indicating the role of MOF in improving the adsorption performance. The Fe3O4/biochar/ZIF-8 showed an excellent adsorption performance in the presence of coexisting ions at a wide pH range using different eluents to study reusability up to five successive cycles. We can conclude from this study that this nanoadsorbent is a promising material for removing pollutants from environmental water samples.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3