A semi-empirical model for predicting carbonation depth of RAC under two-dimensional conditions

Author:

Wang Jian1,Ma Yawei12

Affiliation:

1. Ministry of Education, Department of Geological Engineering, Lanzhou University , Lanzhou , China

2. Key Laboratory of Mechanics of Disaster and Environment in Western China, Lanzhou University , Lanzhou , China

Abstract

Abstract Recycled aggregate concrete has been widely used in practical engineering construction, and the carbonation resistance of buildings within their allowable strength range is currently urgently needed to be considered. By constructing a time prediction model for the carbonation depth of recycled concrete, the time when the complete carbonation zone reaches the depth of the steel bar inside the concrete can be determined, and then the carbonation life of the building can be determined. However, the current carbonation model for recycled aggregates (RAs) has theoretical and practical limitations. The existing semi-empirical model has not quantitatively considered the influence of particle sizes of RAs on the carbonation depth, but only qualitatively analyzed the effect of particle size on the carbonation depth. In practical applications, the existing models usually only determine the structural life under one-dimensional carbonation conditions in laboratory conditions, ignoring the fact that two-dimensional carbonation mainly occurs in actual engineering. In order to overcome these limitations, a semi-empirical model for predicting the carbonation depth of recycled concrete is proposed for life prediction of structural carbonation. Based on the replacement rate of RAs, external environmental influences, and the stress state of components, the particle size of RAs is considered in the carbonation depth prediction model, and model parameters are fitted by performing carbonation experiments on specimens with different mix ratios. The model is then validated by applying a large amount of existing experimental data to the fitted model, and the results show that the model has good applicability for the constructed components. Furthermore, the model is used to predict the carbonation life of the main components in actual engineering and considers two-dimensional carbonation. It was found that when the replacement rate of RAs was 40%, the predicted life of the main components after carbonation in actual engineering was close to the design life.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3