KaIDA: a modular tool for assisting image annotation in deep learning

Author:

Schilling Marcel P.1ORCID,Schmelzer Svenja1ORCID,Klinger Lukas1,Reischl Markus1

Affiliation:

1. Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology , D-76344 Eggenstein-Leopoldshafen , Germany

Abstract

Abstract Deep learning models achieve high-quality results in image processing. However, to robustly optimize parameters of deep neural networks, large annotated datasets are needed. Image annotation is often performed manually by experts without a comprehensive tool for assistance which is time- consuming, burdensome, and not intuitive. Using the here presented modular Karlsruhe Image Data Annotation (KaIDA) tool, for the first time assisted annotation in various image processing tasks is possible to support users during this process. It aims to simplify annotation, increase user efficiency, enhance annotation quality, and provide additional useful annotation-related functionalities. KaIDA is available open-source at https://git.scc.kit.edu/sc1357/kaida.

Funder

KIT Future Fields II

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactive, Privacy-Aware Semantic Mapping for Homes *;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24

2. Integrating Crowd and Machine Learning in an Intelligent Interface: A Case Study of Oil Spill Detection in Satellite Images;Proceedings of the 2024 International Conference on Advanced Visual Interfaces;2024-06-03

3. Towards Automated Regulation of Jacobaea Vulgaris in Grassland using Deep Neural Networks;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

4. AI2Seg: A Method and Tool for AI-based Annotation Inspection of Biomedical Instance Segmentation Datasets;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

5. Automated Style-Aware Selection of Annotated Pre-Training Databases in Biomedical Imaging;2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI);2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3