Artificial Bee Colony algorithm in estimating kinetic parameters for yeast fermentation pathway

Author:

Ismail Ahmad Muhaimin1,Remli Muhammad Akmal23,Choon Yee Wen23,Nasarudin Nurul Athirah4,Ismail Nor-Syahidatul N.5,Ismail Mohd Arfian5,Mohamad Mohd Saberi4ORCID

Affiliation:

1. Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing , Universiti Teknologi Malaysia , 81310 Skudai , Johor , Malaysia

2. Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan , 16100 Kota Bharu , Kelantan , Malaysia

3. Faculty of Data Science and Computing , Universiti Malaysia Kelantan , 16100 Kota Bharu , Kelantan , Malaysia

4. Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences , United Arab Emirates University , P.O. Box 15551 , Al Ain , United Arab Emirates

5. Faculty of Computing, College of Computing & Applied Sciences , Universiti Malaysia Pahang , 26300 Gambang , Pahang , Malaysia

Abstract

Abstract Analyzing metabolic pathways in systems biology requires accurate kinetic parameters that represent the simulated in vivo processes. Simulation of the fermentation pathway in the Saccharomyces cerevisiae kinetic model help saves much time in the optimization process. Fitting the simulated model into the experimental data is categorized under the parameter estimation problem. Parameter estimation is conducted to obtain the optimal values for parameters related to the fermentation process. This step is essential because insufficient identification of model parameters can cause erroneous conclusions. The kinetic parameters cannot be measured directly. Therefore, they must be estimated from the experimental data either in vitro or in vivo. Parameter estimation is a challenging task in the biological process due to the complexity and nonlinearity of the model. Therefore, we propose the Artificial Bee Colony algorithm (ABC) to estimate the parameters in the fermentation pathway of S. cerevisiae to obtain more accurate values. A metabolite with a total of six parameters is involved in this article. The experimental results show that ABC outperforms other estimation algorithms and gives more accurate kinetic parameter values for the simulated model. Most of the estimated kinetic parameter values obtained from the proposed algorithm are the closest to the experimental data.

Funder

United Arab Emirates University

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3