Computational study of the substituent effects on the gas-phase stabilities of phenylboranylmethyl anions

Author:

Nakata Kazuhide1,Fujio Mizue2

Affiliation:

1. Science Research Center, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo 102-8160, Japan

2. Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract

AbstractThe relative gas-phase stabilities of ring-substituted phenylboranylmethyl anions were computationally determined using isodesmic reactions. The energies of species included in the reactions were calculated at the B3LYP/6-311+G(2d,p) level of theory. The obtained substituent effects were analyzed by the extended Yukawa-Tsuno equation, and unexpectedly substantial r (0.59) and s (0.65) values were found for the fully-optimized planar anion. The substantial through-resonance effect quantified by the r value was observed, although it is not possible to draw a canonical form in which the negative charge is delocalized on the benzene ring. Substituent effects were also analyzed for the anions in which the dihedral angle (φ) between the side chain plane and the benzene ring was fixed. The r value decreased significantly by changing the φ from 0° to 90°, while the s value changed little. NBO analyses revealed that the r value is proportional to the sum of the π–π* and σ–π* orbital interactions between the side chain and the benzene ring. This fact shows that the through-resonance effect quantified by the r value is present at all φ, and therefore, the anion cannot become an ideal σ0-reference system. The constant saturation effect quantified by the s value can be explained by the constant charge distributed to the benzene ring. The combination of substituent-effect analysis and NBO analysis successfully revealed the nature of the anion.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Substituent effects on the stabilities of anion derivatives;Advances in Physical Organic Chemistry;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3