Fe3+-bis-ethylenediamine complex bridged periodic mesoporous organosilica for the efficient removal of arsenate and chromate

Author:

Parambadath Surendran1,Mathew Aneesh1,Kim Su Yeon1,Park Sung Soo1,Ha Chang-Sik2

Affiliation:

1. Department of Polymer Science and Engineering , Pusan National University , Geumjeong-gu, Busan, 46241 , Republic of Korea

2. Department of Polymer Science and Engineering , Pusan National University , Geumjeong-gu, Busan, 46241 , Republic of Korea , Tel.: +82-51-510-2407, Fax: +82-51-513-7720

Abstract

Abstract The direct removal of arsenate (AsO4 3−) and chromate (CrO4 2−) from water were achieved using a Fe3+-bis-ethylenediamine complex-bridged periodic mesoporous organosilica with a 20% organosilane content (Fe-EDPMO-20). The bridged Fe3+-bis-ethylenediamine complex was introduced to the pore wall of the PMO by combining the pre-complexation and co-condensation processes. N,N′-bis[3-(triethoxysilyl)propyl]ethylenediamine (TESEN) and tetramethyl orthosilicate (TMOS) as silica precursors were used with cetyltrimethylammonium bromide (CTABr) as a surfactant under basic conditions for the preparation of highly ordered Fe-EDPMO-20. Transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurements confirmed that the Fe-EDPMO-20 had an ordered hexagonal p6mm mesostructure. The material had a Brunauer-Emmett-Teller surface area of 734 m2 g−1, pore diameter of 2.6 nm, and pore volume of 0.61 cm3 g−1. UV-vis and X-ray photoelectron spectroscopy confirmed that Fe3+ was embedded in the coordination site by the nitrogen atoms from ethylenediamine. The adsorption efficiencies of arsenate and chromate ions by Fe-EDPMO-20 were examined as a function of pH, stirring time, amount of adsorbent, and initial concentration of metal ion solution. The maximum adsorption for arsenate and chromate were 156 and 102 mg g−1 within 6 and 24 h, respectively, at pH 4.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3