Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier

Author:

Ab’lah Norul Nazilah123,Konduru Venkata Nagarjun4,Wong Tin Wui15

Affiliation:

1. Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE , Universiti Teknologi MARA, Puncak Alam , 42300 Selangor , Malaysia

2. Particle Design Research Group, Faculty of Pharmacy , Universiti Teknologi MARA, Puncak Alam , 42300 Selangor , Malaysia

3. Centre of Foundation Studies, Universiti Teknologi MARA, Dengkil , 43800 Selangor , Malaysia

4. Department of Environmental Health , Harvard T.H. Chan School of Public Health, Harvard University, 665, Huntington Avenue , Boston, MA 02115 , USA

5. Particle Design Research Group, Faculty of Pharmacy , Universiti Teknologi MARA, Puncak Alam , 42300 Selangor , Malaysia , e-mail:

Abstract

Abstract Starch is constituted of amylose and amylopectin. Debranching of amylopectin converts it into amylose thereby producing resistant starch which is known to be less digestible by the amylase. This study designed resistant starch using acid hydrolysis and heat-moisture treatment methods with native corn starch as the starting material. Both native and processed starches were subjected to Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry and molecular weight analysis. They were nanospray-dried into nanoparticles with 5-fluorouracil as the drug of interest for colon cancer treatment. These nanoparticles were subjected to size, zeta potential, morphology, drug content and in vitro drug release analysis. Heat-moisture treatment of native corn starch enabled the formation of resistant starch through amylopectin debranching and molecular weight reduction thereby enhancing hydrogen bonding between the starch molecules at the amorphous phase and gelatinization capacity. The nanoparticles prepared from resistant starch demonstrated similar drug release as those of native starch in spite of the resistant starch had a lower molecular weight. The resistant starch is envisaged to be resistant to the digestive action of amylase in intestinal tract without the formed nanoparticles exhibiting excessively fast drug release in comparison to native starch. With reduced branching, it represents an ideal precursor for targeting ligand conjugation in design of oral colon-specific nanoparticulate drug carrier.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3