Biological conduits based on spider silk for reconstruction of extended nerve defects

Author:

Vogt Peter M.1,Radtke Christine12,Krezdorn Nicco1,Kollewe Katja3,Liebsch Christina1,Dastagir Khaled1,Strauß Sarah1

Affiliation:

1. Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories , Hannover Medical School , Hannover , Germany

2. Department of Plastic, Reconstructive and Aesthetic Surgery , Medical University , Vienna , Austria

3. Department of Neurology , Hannover Medical School , Hannover , Germany

Abstract

Abstract Objectives The availability of appropriate conduits remains an obstacle for successful reconstruction of long-distance nerve defects. In previous sheep trials, we were able to bridge 6 cm nerve gaps with nerve conduits based on spider silk fibers with full functional outcomes. Here, we describe the first application of spider silk for nerve repair in humans. Methods Four patients with extended nerve defects (>20 cm) underwent nerve reconstruction by interposition of conduits that were composed of spider silk fibers contained in autologous veins. The longitudinal luminal fibers (approx. 2500 fibers per graft) consisted of drag line silk from Trichonephila spiders. All patients were evaluated between 2 and 10 years postreconstruction, clinically, and by neurography. Results In all patients, primary wound healing and no adverse reactions to the implanted spider silk material were observed. Patients regained the following relevant functions: protective sensibility, full flexor function with near-normal grasp and powerful function after microvascular gracilis muscle transfer, and key grip function and gross finger flexion after additional tenodesis. One patient with sciatic nerve reconstruction developed protective sensibility of the lower leg, foot, and gait, enabling normal walking and jogging. No neuroma formation or neuropathic or chronic pain occurred in any of the patients. Conclusions For patients with extended peripheral nerve defects in the extremities, use of conduits based on spider silk fibers offers the possibility of restoring sensory function and protection from neuroma. This kind of nerve bridges provides new perspectives for the reconstruction of complex and long-distance nerve defects.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3