Affiliation:
1. Doctoral student, Vilnius University Institute of Mathematics and Informatics
2. Associate Professor, Vilnius Gediminas Technical University
Abstract
Abstract
The intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS) and Sequential Floating Forward Selection (SFFS) techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-feature-selection-based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.
Reference19 articles.
1. [1] S. Ramakrishnan and I. M. M. El Emary, “Speech emotion recognition approaches in human computer interaction,” Telecommun. Systems, vol. 52, issue 3, pp. 1467–1478, Mar. 2013. https://doi.org/10.1007/s11235-011-9624-z
2. [2] S. G. Koolagudi and K. S. Rao, “Emotion recognition from speech: a review,” Int. J. of Speech Technology, vol. 15, issue 2, pp. 99–117, June 2012. https://doi.org/10.1007/s10772-011-9125-1
3. [3] Z. Xiao, E. Dellandrea, L. Chen and W. Dou, “Recognition of emotions in speech by a hierarchical approach,” in 2009 3rd Int. Conf. on Affective Computing and Intelligent Interaction and Workshops, Amsterdam, 2009, pp. 1–8. https://doi.org/10.1109/acii.2009.5349587
4. [4] P. Giannoulis and G. Potamianos, “A hierarchical approach with feature selection for emotion recognition from speech,” in Proc. of the Eighth Int. Conf. on Language Resources and Evaluation, 2012, pp. 1203–1206.
5. [5] B. Schuller, B. Vlasenko, F. Eyben, G. Rigoll and A. Wendemuth, “Acoustic Emotion Recognition: A Benchmark Comparison of Performances,” in 2009 IEEE Workshop on Automatic Speech Recognition & Understanding, Merano, 2009, pp. 552–557. https://doi.org/10.1109/asru.2009.5372886
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献