Short Principal Ideal Problem in multicubic fields

Author:

Lesavourey Andrea1,Plantard Thomas1,Susilo Willy1

Affiliation:

1. Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of Wollongong, Wollongong, Australia

Abstract

AbstractOne family of candidates to build a post-quantum cryptosystem upon relies on euclidean lattices. In order to make such cryptosystems more efficient, one can consider special lattices with an additional algebraic structure such as ideal lattices. Ideal lattices can be seen as ideals in a number field. However recent progress in both quantum and classical computing showed that such cryptosystems can be cryptanalysed efficiently over some number fields. It is therefore important to study the security of such cryptosystems for other number fields in order to have a better understanding of the complexity of the underlying mathematical problems. We study in this paper the case of multicubic fields.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Reference40 articles.

1. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields;Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms

2. Factoring polynomials with rational coefficients;Mathematische Annalen,1982

3. Factoring polynomials with rational coefficients;Mathematische Annalen,1982

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding Generators of Ideals in Non-Cyclic Number Fields by Using Norm Relations;2024 8th International Conference on Cryptography, Security and Privacy (CSP);2024-04-20

2. An algorithm for solving the principal ideal problem with subfields;Advances in Mathematics of Communications;2023

3. On the Discrete Logarithm Problem in the Ideal Class Group of Multiquadratic Fields;Progress in Cryptology – LATINCRYPT 2023;2023

4. Norm relations and computational problems in number fields;Journal of the London Mathematical Society;2022-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3