Improved cryptanalysis of a ElGamal Cryptosystem Based on Matrices Over Group Rings

Author:

Pandey Atul1,Gupta Indivar2,Kumar Singh Dhiraj3

Affiliation:

1. Department of Mathematics, University of Delhi , Delhi - , India

2. SAG, Metcalfe House, DRDO Complex , Delhi - , India

3. Zakir Husain College, University of Delhi , Delhi - , India

Abstract

Abstract ElGamal cryptosystem has emerged as one of the most important construction in Public Key Cryptography (PKC) since Diffie-Hellman key exchange protocol was proposed. However, public key schemes which are based on number theoretic problems such as discrete logarithm problem (DLP) are at risk because of the evolution of quantum computers. As a result, other non-number theoretic alternatives are a dire need of entire cryptographic community. In 2016, Saba Inam and Rashid Ali proposed a ElGamal-like cryptosystem based on matrices over group rings in ‘Neural Computing & Applications’. Using linear algebra approach, Jia et al. provided a cryptanalysis for the cryptosystem in 2019 and claimed that their attack could recover all the equivalent keys. However, this is not the case and we have improved their cryptanalysis approach and derived all equivalent key pairs that can be used to totally break the ElGamal-like cryptosystem proposed by Saba and Rashid. Using the decomposition of matrices over group rings to larger size matrices over rings, we have made the cryptanalysing algorithm more practical and efficient. We have also proved that the ElGamal cryptosystem proposed by Saba and Rashid does not achieve the security of IND-CPA and IND-CCA.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pell hyperbolas in DLP–based cryptosystems;Finite Fields and Their Applications;2022-12

2. DMQC Project: Design Technologies, Implementation, and Research of the Properties of a Digital Multi-Qubit Coprocessor;2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2021-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3