Equidistribution Among Cosets of Elliptic Curve Points in Intervals

Author:

Kim Taechan1,Tibouchi Mehdi1

Affiliation:

1. , 3–9–11, Midori-cho, Musashino-shi, Tokyo, 180–8585, Japan

Abstract

AbstractIn a recent paper devoted to fault analysis of elliptic curve-based signature schemes, Takahashi et al. (TCHES 2018) described several attacks, one of which assumed an equidistribution property that can be informally stated as follows: given an elliptic curve E over 𝔽q in Weierstrass form and a large subgroup HE(𝔽q) generated by G(xG, yG), the points in E(𝔽q) whose x-coordinates are obtained from xG by randomly flipping a fixed, sufficiently long substring of bits (and rejecting cases when the resulting value does not correspond to a point in E(𝔽q)) are close to uniformly distributed among the cosets modulo H. The goal of this note is to formally state, prove and quantify (a variant of) that property, and in particular establish sufficient bounds on the size of the subgroup and on the length of the substring of bits for it to hold. The proof relies on bounds for character sums on elliptic curves established by Kohel and Shparlinski (ANTS–IV).

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Reference16 articles.

1. New Bleichenbacher records: fault attacks on qDSA signatures;IACR Trans. Cryptogr. Hardw. Embed. Syst.,2018

2. Montgomery curves and their arithmetic;J. Cryptographic Engineering,2018

3. Speeding the Pollard and elliptic curve methods of factorization;Math. Comp.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3