A framework for cryptographic problems from linear algebra

Author:

Bootland Carl1,Castryck Wouter2,Szepieniec Alan1,Vercauteren Frederik1

Affiliation:

1. ESAT/COSIC, KU Leuven, Kasteelpark Arenberg 10, 3000Leuven, Belgium

2. Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3000Leuven, Belgium

Abstract

AbstractWe introduce a general framework encompassing the main hard problems emerging in lattice-based cryptography, which naturally includes the recently proposed Mersenne prime cryptosystem, but also problems coming from code-based cryptography. The framework allows to easily instantiate new hard problems and to automatically construct plausibly post-quantum secure primitives from them. As a first basic application, we introduce two new hard problems and the corresponding encryption schemes. Concretely, we study generalisations of hard problems such as SIS, LWE and NTRU to free modules over quotients of ℤ[X] by ideals of the form (f,g), wherefis a monic polynomial andg∈ ℤ[X] is a ciphertext modulus coprime tof. For trivial modules (i.e. of rank one), the casef=Xn+ 1 andg=q∈ ℤ>1corresponds to ring-LWE, ring-SIS and NTRU, while the choicesf=Xn– 1 andg=X– 2 essentially cover the recently proposed Mersenne prime cryptosystems. At the other extreme, when considering modules of large rank and letting deg(f) = 1, one recovers the framework of LWE and SIS.

Funder

Onderzoeksraad, KU Leuven

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Reference98 articles.

1. Oblivious transfer based on NTRUEncrypt;IEEE Access,2018

2. Somewhat practical fully homomorphic encryption;Preprint,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Lattice-Based Attack on Mersenne Low Hamming Ratio Search Problem;Lecture Notes in Computer Science;2024

2. Reproducible families of codes and cryptographic applications;Journal of Mathematical Cryptology;2021-09-17

3. On the Integer Polynomial Learning with Errors Problem;Public-Key Cryptography – PKC 2021;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3