Effects of chip pretreatment and feeding segments on specific energy and pulp quality in TMP production

Author:

Sandberg Christer1,Nelsson Erik2,Engberg Birgitta A.3,Berg Jan-Erik3,Engstrand Per3

Affiliation:

1. Holmen Paper AB , Paper Product Development , SE-601 88 Norrköping , Sweden

2. Now at HEAD Engineering AB , Enspännarvägen 1 , SE-131 52 Nacka Strand , Sweden

3. Mid Sweden University , FSCN , Department of Chemical Engineering , SE-851 70 Sundsvall , Sweden

Abstract

Abstract Increased wood softening and refining intensity have earlier been utilized to improve refining efficiency in mechanical pulping. We have evaluated a combination of increased softening by low dose sulphite chip pretreatment and increased intensity by feeding segment design in a TMP line for production of high quality printing papers. Norway spruce wood chips were preheated, compressed in an Impressafiner and impregnated with water or sodium sulphite solutions (Na2SO3 charges 3.6 and 7.2 kg/t). Chips were refined in two parallel 68” double disc refiners using two different refining conditions: standard bidirectional segments at normal production rate (9 t/h) and feeding segments at increased production rate (11.1–12.1 t/h). The feeding segments enabled a 30 % increase in production rate. Refining with feeding segments at 12.1 t/h production rate combined with chip pretreatment with 3.6 kg/t sodium sulphite reduced the specific energy 360 kWh/t (19 %) compared to refining with standard segments and no pretreatment. Pulp properties were similar for the two configurations. The combination of feeding segments and chip pretreatment with water reduced the specific energy 180 kWh/t (9 %). Implementation of most of the technology presented has reduced the electrical energy use for the mill by approximately 80 GWh/year.

Funder

Knowledge Foundation

Energimyndigheten

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Reference51 articles.

1. Ahrel, I., Bäck, I. (1970) Thermomechanical pulp at Rockhammar, EUCEPA. In: Proc. Symp. Mech. Pulp. Oslo. pp. 83–91.

2. Andersson, S., Sandberg, C., Engstrand, P. (2012) Comparison of mechanical pulps from two stage HC single disc and HC double disc – LC refining. Appita J. 65(1):57–62.

3. Asplund, A., Bystedt, I. (1973) Development of the thermo-mechanical pulping method. In: Int. Mech. Pulping Conf. Stockholm, p. 15:1.

4. Atack, D. (1972) On the characterization of pressurized refiner mechanical pulps. Svensk Papperstidning 75(3):89–94.

5. Atack, D., Heitner, C., Stationwala, M.I. (1978) Ultra high yield pulping of eastern black spruce. Svensk Papperstidning 81(5):164–176.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3