Affiliation:
1. RISE Bioeconomy , Biorefinery and Energy , Box 5604 , Stockholm , Sweden
Abstract
Abstract
Impregnation with high initial concentration is fast and efficient, leading to a homogeneous delignification in the subsequent cook, resulting in improved screened pulp yield. To obtain high initial alkali concentration, the white liquor flow needs to be significantly increased. The moisture content of the wood chips and the alkali concentration of the white liquor limit the initial alkali concentration of the impregnation liquor that can be reached. It is therefore of interest to evaluate the possibility to implement high alkali impregnation (HAI) industrially and the consequences this would have on the mill system. The effect of HAI on mass and energy balances in a kraft pulp mill has been studied using mill model simulations. The sensitivity to disturbances in important parameters for process control has been compared to impregnation scenarios used industrially. It was shown that high initial alkali concentration can be achieved on industrial scale by increased white liquor flow. HAI has a positive effect on recovery flows and reduces the need for make-up chemicals. The HAI concept is less sensitive to variations in process parameters, such as chip moisture and white liquor concentration, thus diminishing the risk of alkali depletion in chip cores.
Funder
Svenska Forskningsrådet Formas
Subject
General Materials Science,Forestry
Reference23 articles.
1. Andrews, E., Chang, H., Kirkman, A. (1983) Extending delignification in kraft and kraft/oxygen pulp of softwood by treatment with sodium sulfide liquor. In: Int. Symp. Wood Pulping Chem., Tsukuba, Japan. pp. 177–182.
2. Berglin, N., Lovell, A., Delin, L., Törmälä, J. (2011) The 2010 reference mill for kraft market pulp. In: Tappi PEERS Conference, Portland, Oregon, October 2–5. pp. 191–197.
3. Brännvall, E. (2018) Increasing pulp yield in kraft cooking of softwoods by high initial effective alkali concentration (HIEAC) during impregnation leading to decreasing secondary peeling of cellulose. Holzforschung 72(10):819–827.
4. Brännvall, E., Bäckström, M. (2016) Improved impregnation efficiency and pulp yield of softwood kraft pulp by high effective alkali charge in the impregnation stage. Holzforschung 70(11):1031–1037.
5. Brännvall, E., Reimann, A. (2018) The balance between alkali diffusion and alkali consuming reactions during impregnation of softwood. Impregnation for kraft pulping revisited. Holzforschung 72(3):169–178.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献